Program Description

Mechanical engineering is a creative, diverse discipline. Mechanical engineers design, build and control the devices, machines, processes and systems that are the mainstay of modern industrialized society.

Students prepare for a career in mechanical engineering through a curriculum that includes the study of the principles governing energy transfer, mechanical design, sensors and control devices and the application of these principles to the creative solution of practical modern problems.

At a Glance

- **College/School:** [Ira A. Fulton Schools of Engineering](http://www.asu.edu)
- **Location:** Tempe or [Online, ASU Local](http://www.asu.edu)
- **Additional Program Fee:** Yes
- **Second Language Requirement:** No
- **First Required Math Course:** MAT 265 - Calculus for Engineers I
- **Math Intensity:** Substantial

Required Courses (Major Map)

- [2023 - 2024 Major Map (On-campus)](http://www.asu.edu)
- [2023 - 2024 Major Map (Online)](http://www.asu.edu)
- [Major Map (Archives)](http://www.asu.edu)
Concurrent Program Options

Students pursuing concurrent degrees (also known as a "double major") earn two distinct degrees and receive two diplomas. Working with their academic advisors, students can create their own concurrent degree combination. Some combinations are not possible due to high levels of overlap in curriculum.

Accelerated Program Options

This program allows students to obtain both a bachelor's and master's degree in as little as five years. It is offered as an accelerated bachelor's plus master's degree with:

Aerospace Engineering, MS
Materials Science and Engineering, MS
Mechanical Engineering, MS
Modern Energy Production and Sustainable Use, MS
Robotics and Autonomous Systems (Mechanical and Aerospace Engineering), MS

Acceptance to the graduate program requires a separate application. Students typically receive approval to pursue the accelerated master's during the junior year of their bachelor's degree program. Interested students can learn about eligibility requirements and how to apply.

Admission Requirements

General University Admission Requirements:
All students are required to meet general university admission requirements.
First-year | Transfer | International | Readmission

Additional Requirements:

The admission standards for majors in the Ira A. Fulton Schools of Engineering, shown below, are higher than minimum university admission standards. International students must meet the same admission standards, with the possible additional requirement of a minimum English language proficiency test score. If the university requires an English proficiency test score from the applicant, then admission to engineering requires a minimum TOEFL iBT score of 79 (internet-based test, taken in a testing center), a minimum IELTS score of 6.5, a minimum PTE score of 58, a minimum Duolingo English score of 105, or a minimum Cambridge English exam score of 176.

First-year admission:

1. minimum 1210 SAT combined evidence-based reading and writing plus math score or minimum 24 ACT combined score, or a minimum high school cumulative GPA of 3.00 in ASU competency courses, or class ranking in top 25% of high school class, and
2. no high school math or science competency deficiencies
Transfer Admission Requirements:

Transfer students with fewer than 24 transferable college credit hours:

1. minimum transfer GPA of 3.00 for fewer than 24 transfer hours, and
2. no high school math or science competency deficiencies, and
3. minimum 1210 SAT combined evidence-based reading and writing plus math score (or 1140 if taken prior to March 5, 2016) or minimum 24 ACT combined score, or a minimum high school cumulative GPA of 3.00 in ASU competency courses, or class ranking in top 25% of high school class

Transfer students with 24 or more transferable college credit hours must meet EITHER the primary or the secondary criteria (not both):

Primary criteria

1. minimum transfer GPA of 3.00 for 24 or more transfer hours, and
2. no high school math or science competency deficiencies (if ASU Admission Services requires submission of a high school transcript)

Secondary criteria

1. minimum transfer GPA of 2.75 for 24 or more transfer credit hours, and
2. minimum GPA of 2.75 in all critical courses: MAE 201 Mechanics of Particles and Rigid Bodies I: Statics, MAE 202 Mechanics of Particles and Rigid Bodies II: Dynamics, MAE 213 Mechanics of Materials, and MAE 241 Introduction to Thermodynamics

Tuition Information

When it comes to paying for higher education, everyone’s situation is different. Students can learn about ASU tuition and financial aid options to find out which will work best for them.

Change of Major Requirements

Admission requirements for many majors in the Ira A. Fulton Schools of Engineering are higher than university admission standards.

Students should visit the Change of Major form for information about how to change a major to this program.

Attend Online

ASU Online
ASU offers this program in an online format with multiple enrollment sessions throughout the year. Applicants may view the program’s ASU Online page for program descriptions and to request more information.

ASU Local

It is now possible to earn an ASU degree with ASU Local, an integrated college experience in which students take advantage of in-person success coaching and programming experiences on site while completing one of 130+ undergraduate online degree programs, all of which come with online faculty interaction and tutoring support.

Transfer Options

ASU is committed to helping students thrive by offering tools that allow personalization of the transfer path to ASU. Students may use MyPath2ASU® to outline a list of recommended courses to take prior to transfer.

ASU has transfer partnerships in Arizona and across the country to create a simplified transfer experience for students. These pathway programs include exclusive benefits, tools and resources, and they help students save time and money in their college journey.

Program Learning Outcomes

Program learning outcomes identify what a student will learn or be able to do upon completion of their program. This program has the following program outcomes:

- Apply principles of mathematics and science to solve complex engineering problems.
- Apply engineering design to a student project with consideration of public welfare/other factors.
- Develop and conduct engineering experiments, and analyze and interpret data.

Global Opportunities

Global Experience

Students gain valuable, resume-enhancing experience when studying abroad. With over 300 programs available, study abroad allows students to tailor their experience to their unique interests and skill sets. Students in mechanical engineering are able to gain hands-on experience in a variety of countries around the world. In a competitive field, students stand out with the heightened cultural competency and leadership and critical thinking skills they acquired when studying abroad.

The Ira A. Fulton Schools of Engineering recommends these programs for student majoring in mechanical engineering.
Career Opportunities

Mechanical engineers are employed in virtually every kind of industry. They are involved in seeking new knowledge through research; generating creative design and development; and in the production, control, management and sales of the devices and systems needed by society. Therefore, a major strength of a mechanical engineering education is the flexibility it provides in future employment opportunities for its graduates.

The BSE program in mechanical engineering has the following program educational objectives:

Through activities such as volunteering, entrepreneurial endeavors, community service, and their employment, graduates of the mechanical engineering program demonstrate commitment to the Sun Devil ideals of global engagement, social embeddedness, social transformation and sustainability.

Graduates of the mechanical engineering program should have attained one or more of the following objectives within a few years after earning their degree:

- employment in engineering or other fields in a position that capitalizes on the skills and abilities gained through the degree program in mechanical engineering (holding positions of increasing responsibility and leadership within their organizations)
- admission into a graduate degree program in mechanical engineering or other technical field
- admission into a professional degree program, such as law, business or medicine, in accordance with the specific interests and abilities of the graduate

Graduates of the mechanical engineering program are expected to attain the following outcomes:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Career example titles and salaries listed below are not necessarily entry level, and students should take into consideration how years of experience, geographical location, and required advanced degrees or certifications may affect pay scales.
<table>
<thead>
<tr>
<th>Career</th>
<th>*Growth</th>
<th>*Median Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Engineer</td>
<td>10.0%</td>
<td>$96,310</td>
</tr>
<tr>
<td>Biomedical Engineer</td>
<td>5.1%</td>
<td>$99,550</td>
</tr>
<tr>
<td>Energy Engineer</td>
<td>3.3%</td>
<td>$104,600</td>
</tr>
<tr>
<td>Engineering Manager</td>
<td>4.1%</td>
<td>$159,920</td>
</tr>
<tr>
<td>Mechanical Engineer</td>
<td>10.0%</td>
<td>$96,310</td>
</tr>
<tr>
<td>Supply Chain Engineer</td>
<td>11.7%</td>
<td>$96,350</td>
</tr>
</tbody>
</table>

* Data obtained from the Occupational Information Network (O*NET) under sponsorship of the U.S. Department of Labor/Employment and Training Administration (USDOL/ETA).

🌟 Bright Outlook

Professional Licensure

ASU programs that may lead to professional licensure or certification are intended to prepare students for potential licensure or certification in Arizona. Completion of an ASU program may not meet educational requirements for licensure or certification in another state. For more information, students should visit the ASU professional licensure webpage.

Students should note that not all programs within the Fulton Schools of Engineering lead to professional licensure.

Contact Information

Mechanical and Aerospace Engineering Program | ECG 202
semte@asu.edu | 480-965-2335