You will thrive in a project-based environment in which you connect physics, computer science and modern mathematical modeling to solve industry challenges.

Program Description

The acceleration of advances at the frontier where physics, engineering and technology meet creates a need for interdisciplinary training and research that is not readily accommodated by traditional single-focus programs in physics.

Pairing fundamental physics with immediate applications, the BS program in applied physics is attractive to students whose interests span new physical technologies in industry and engineering. The degree program combines physics, computer science and applied mathematics to tackle complex real-life problems in physics, material sciences, engineering, chemistry and others.

This bachelor's degree program brings together the expertise of physics faculty, particularly in the modeling of physical systems, which relies heavily on both modern numerical techniques and fundamental physics.

The growing presence of Intel and other high-tech companies in the east valley and metropolitan Phoenix presents a unique opportunity to enhance the students' interaction with industry. Given the importance of hands-on experience, the degree program offers a series of unique courses allowing students interactive involvement in a project-based environment.

At a Glance

- **College/School:** [College of Integrative Sciences and Arts](#)
- **Location:** Polytechnic
- **Additional Program Fee:** Yes
• Second Language Requirement: No
• First Required Math Course: MAT 265 - Calculus for Engineers I
• Math Intensity: Substantial

Required Courses (Major Map)

2023 - 2024 Major Map
Major Map (Archives)

Concurrent Program Options

Students pursuing concurrent degrees (also known as a "double major") earn two distinct degrees and receive two diplomas. Working with their academic advisors, students can create their own concurrent degree combination. Some combinations are not possible due to high levels of overlap in curriculum.

Admission Requirements

General University Admission Requirements:
All students are required to meet general university admission requirements.
First-year | Transfer | International | Readmission

Tuition Information

When it comes to paying for college, everyone's situation is different. Students can learn about ASU tuition and financial aid options to find out which will work best for them.

Change of Major Requirements

A current ASU student has no additional requirements for changing majors.

Students should visit the Change of Major form for information about how to change a major to this program.

Transfer Options

ASU is committed to helping students thrive by offering tools that allow personalization of the transfer path to ASU. Students may use MyPath2ASU® to outline a list of recommended courses to take prior to transfer.

ASU has transfer partnerships in Arizona and across the country to create a simplified transfer experience for students. These pathway programs include exclusive benefits, tools and resources, and they help students save time and money in their college journey.
Global Opportunities

Global Experience

Global Education programs students majoring in applied physics are able to gain valuable hands-on experience tailored to their unique interests and skill sets as well as personal enrichment plus the heightened cultural competency and leadership and critical thinking skills that will be an advantage in their career.

With more than 300 Global Education programs available, whether in a foreign country, in the U.S., or online, students build communication skills, are challenged to adapt and persevere, are exposed to differences across the world, and increase their ability to work with diverse groups of people.

Career Opportunities

Graduates apply their knowledge in high-performance and scientific computing, biophysics, condensed matter physics, chemistry, material science, electrodynamics and radar physics. This knowledge is vital for employment in chemical and pharmaceutical companies, environmental management agencies and firms specializing in scientific software. Graduates are also prepared to continue their studies in graduate programs in physics and chemistry.

Career example titles and salaries listed below are not necessarily entry level, and students should take into consideration how years of experience, geographical location, and required advanced degrees or certifications may affect pay scales.

<table>
<thead>
<tr>
<th>Career</th>
<th>*Growth</th>
<th>*Median Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Sciences Manager</td>
<td>4.8%</td>
<td>$144,440</td>
</tr>
<tr>
<td>Nanosystems Engineer</td>
<td>3.3%</td>
<td>$104,600</td>
</tr>
<tr>
<td>Photonic Engineer</td>
<td>3.3%</td>
<td>$104,600</td>
</tr>
<tr>
<td>Physicist</td>
<td>4.7%</td>
<td>$142,850</td>
</tr>
<tr>
<td>Physics Professor</td>
<td>3.8%</td>
<td>$86,550</td>
</tr>
</tbody>
</table>

* Data obtained from the Occupational Information Network (O*NET) under sponsorship of the U.S. Department of Labor/Employment and Training Administration (USDOL/ETA).

🌟 Bright Outlook

Contact Information

School of Applied Sciences and Arts | SANCA 233
CISA@asu.edu | 480-727-1526