Human Systems Engineering (Health Systems), MS

ESHSEHSMS

Program Description

Degree Awarded: MS Human Systems Engineering (Health Systems)
The MS program in human systems engineering with a concentration in health systems provides current and future managers with the technical expertise to lead efficient health care systems by identifying needs through system modeling, field research and analytics to improve existing health care systems. This concentration program also allows students to perform research and develop innovative approaches to transform health care from reactive to proactive systems, which reflect National Institute of Health initiatives.

At a Glance

- College/School: Ira A. Fulton Schools of Engineering
- Location: Polytechnic campus

Degree Requirements

30 credit hours and a portfolio, or
30 credit hours and a thesis, or
30 credit hours including the required applied project course (HSE 593)

Required Core (12 credit hours)
HSE 520 Methods and Tools in Applied Cognitive Science (3)
HSE 530 Intermediate Statistics for Human Systems Engineering (3)
HSE 531 Data Analytics: Modeling Human Subjects Data (3)
HSE 542 Foundations of Human Systems Engineering (3)
Concentration (6 credit hours)
BMI 605 Health Information Systems and Applications (3)
BMI 613 Workflow Analysis and Redesign in Health Systems Engineering (3)
BMI 616 Clinical Decision Support and Evidence-based Medicine (3)
HCD 502 Health Care Systems and Design (3)
HCD 570 Process Engineering (3)
HCD 575 Leadership and Professionalism (3)

Electives and Research (0 - 9 credit hours)

Other Requirements (3 credit hours)
HSE 525 Health and Human Systems Engineering (3)

Culminating Experience (0 or 6 credit hours)
HSE 593 Applied Project (6) or
HSE 599 Thesis (6) or
portfolio (0)

Additional Curriculum Information
For electives and research coursework, enrollment in HSE 592 Research for three credit hours is required for students completing a thesis, and optional for students completing the applied project or portfolio culminating experience. Students in all culminating experience options should contact the academic unit for an approved electives list.

Students completing a portfolio for the culminating experience must complete 9 credit hours of electives and research coursework.

Other requirement course HSE 525 is required for all students, but in some situations may be substituted with academic unit approval.

Admission Requirements
Applicants must fulfill the requirements of both the Graduate College and the Ira A. Fulton Schools of Engineering.

Applicants are eligible to apply to the program if they have earned a bachelor's or master's degree in engineering, health, nutrition, psychology or a related field from a regionally accredited institution.

Applicants must have a minimum cumulative GPA of 3.00 (scale is 4.00 = "A") in the last 60 hours of their first bachelor's degree program, or applicants must have a minimum cumulative GPA of 3.00 (scale is 4.00 = "A") in an applicable master's degree program.

All applicants must submit:
1. graduate admission application and application fee
2. official transcripts
3. curriculum vitae or professional resume
4. professional statement
5. research summary
6. three letters of recommendation
7. proof of English proficiency

Additional Application Information

An applicant whose native language is not English must provide proof of English proficiency regardless of current residency.

Global Launch at ASU offers an online alternative to standardized testing for international students who are seeking admission to ASU but need proof of English proficiency: https://globallaunch.asu.edu/learn-english/online-english/english-for-admission.

Unofficial transcripts may be submitted at time of application. If admitted, applicants must then submit official transcripts to ASU Graduate Admission Services.

Career Opportunities

Health care is a growing sector of the economy, accounting for almost 18% of the U.S. Gross Domestic Product in 2020 (https://www.cdc.gov). Recent changes to the health care landscape at the federal level have led to increasing demand for measurable increases in efficiency and effectiveness of care delivery. To that end, technologies are deployed to manage, track and measure treatment effectiveness, patient satisfaction, provider reimbursement and process improvement, all of which require understanding of the human system and the complex processes involved in this work. Thus, human systems engineering tools and techniques can create efficiencies in all aspects of care delivery in which a human is involved to improve system performance. Related to human systems engineers in health care, employment of industrial engineers is projected to grow 10% between 2016 and 2026, which is also faster than average for all occupations (Bureau of Labor Statistics).

Contact Information

Human Systems Engineering | SUTON 240
polygrad@asu.edu | 480-727-4723